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Integrable three-dimensional lattices 
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Abstract. Following the work of Zakharov and Shabat, we derive nonlinear equations 
which are integrable through a discrete Gel’fand-Levitan ‘integral’ equation in two (resp 
one, resp zero) continuous and one (resp two, resp three) discrete variables. 

1. Introduction 

In 1974 Zakharov and Shabat developed a general method to construct Lax pairs, 
whose associated nonlinear evolution equations (NEES) are integrable through a 
Gel’fand-Levitan integral equation. 

In this paper we extend the Zakharov-Shabat method to construct nonlinear 
difference evolution equations (NDEES) and nonlinear difference difference equations 
(NDDES) integrable through a discrete Gel’fand-Levitan equation, by considering three 
possible cases: 

(a) the two time-like variables, which one can associate with the Lax operators, are 
both continuous; 

(b) of the two time-like variables, one is continuous and one is discrete; 
(c) both time-like variables are discrete. 

In cases (a) and (b), considered in §§ 2 and 3, one obtains NDEES; in case (c), developed 
in § 4, one obtains NDDES. 

As examples we exhibit some two-dimensional chiral model equations on a lattice, 
which reduce, in the scalar case, to the two-dimensional Toda lattice and the discrete 
analogue of the two-dimensional three-wave equation, both with their Backlund 
transformations (BTS) ; moreover we display some new integrable three-dimensional 
lattice equations. 

2. The discretised Zakharov-Shabat method 

Let us consider a linear discrete ‘integral’ operator 8 acting on the vector function 
$($l(j) . . . q!tN(j))  of the discrete variable j :  

t The research reported in this paper has been supported in part by the CNR grant no 79.00919.02. 
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Here t,b and the N x N matrix function F(n,  j )  may depend, in addition to the discrete 
arguments, parametrically also on other variables continuous or discrete, such as t ,  y, d ,  
h, etc. We require the following condition for F(n,  j ) :  

Let us introduce the Volterra operators I?, and k, such that K+(n, j )  = 0 for n 2 j and 
K-(n, j )  = 0 for j 2 n, and let us assume that the operator (1 +I?+) is invertible. In such a 
case the representation of fi in the factorised form 

(l+fi)=(l+R+>-yl+k-) 

is equivalent to the discrete Gel’fand-Levitan ‘integral’ equations for K+(n, j )  and 
K-(n, i ) ,  

m 

K-(n, j )=F(n,  j ) +  2 K+(n, k ) F ( k , j ) ,  j <n. 
k = n + l  

We now introduce two different operators, f;, acting on the vector function t,b(n)T: 

f’ 0 - -ad, +f& 
= If (E’y’, 

where j is a positive integer number, cy is a scalar constant and l,*is a constant matrix. 
Following Zakharov and Shabat (1974) we can prove that, if F commutes with ?:, 

i.e.$ 

[fi, f”] = 0, 

then we can construct an operator f’ by requiring that the operator equation 

f*(l +I?*) = (1 +R*).f’: 
be multiplicative. 

(4) 

where u?’(n, t )  and v t ’ (n ,  t )  are obtained just by requiring that equation (4) be a 

+ By 
E+I,!I((~) = $(n  * 1); in the following we shall also use the notation L,, by which we mean (dL/dz) .  
i By [A, B] one means AB -BA. 

we mean the jth partial derivative with respect to z ,  i.e. a‘/&’, and by E* the shift operator, such that 
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multiplicative operator equation; for instance we have 

u p  in, t )  = 0, 

uY'(n, t )  = -a a , ~ + ( n ,  n + I ) ,  

u:"(n, t )  = -a &K+(n, n +2)  - ~ y ' ( i z ,  t)K+(n + 1,  n +2), 
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(7)  

* . .  
U$') (n,  t )  = K+(n, n + 1)1,- - liK+(n - j ,  n + 1 - j ) ,  

(8) 
u$"(n, t )=K+(n,  n +2)1, - l iK+(n- j ,  n +2- j ) - v ( f ) (n ,  t)K+(n - j + 1 ,  n - j+2) ,  

From equation (4), together with the definition of the 'potentials' u,$'(n, t )  and u f ' ( n ,  t ) ,  
we obtain the evolution equation for K+(n, j ;  t )  

aag+(n,  s) + i f ~ + ( n ,  s ) - ~ + ( n ,  s Tj ) l f  = 0, s >n + j .  (9) 
We can combine the results written in formulae (2), (3), (5 ) ,  (6), (7) and (8) in the general 
operator To, 

where now the potentials vi"(n, t )  have the following form?: 
k - 1  

v i l " (n , t )=K+(n ,n+k) l ,~  -l lTK+(n-j ,n+k-j)-  v !" (n , t )K+(n- j+i ,n- j+k) ,  
i = l  

N +  and, defining Uk (n, t )  = E,=, u f ' ( n ,  t ) ,  for Uk (n ,  t )  we have 

t )  = 0, 

r = O  s = l  

N -  + (K+(n, n +s + k ) l ,  -ZiK+(n -s, n + k ) ) ,  k 31. 
s = 1 

Equation (9) becomes 
N -  N,' 

j =O ] = 1  
adtK+(n, s) +-9K+(n, s) - K+(n, s -j)lf - K+(n, s +j) lY  = 0, s >n + N +  

It is easy to prove that if the operator E satisfies simultaneously the two equations 

[Tb", PI = 0, 

Tb" = ad, +9b", 
[Tp,  E] = 0, 

Fg) =pa, +9p, 
N* N -  

t Hereafter the summation is equal to zero if the upper limit is lower than the lower limit. 
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with [$?I, $b"] = 0, then the 'dressed' operators 9") and $(2)  satisfy the equation 

p$?) -a$;2' = [ p l )  > $(2)  I. (10) 

We apply the formalism derived so far to construct, as examples, the Lax pairs 
corresponding to a set of different non-Abelian Toda lattices, to the Volterra equation 
and to the discrete two-dimensional three-wave equation. 

Setting 

$('I =L- - - 1 l ~ - + a ~ - l ( n ) ~ , ( n ) ,  $(*)=L:=G-'(~)G(~ + I)E+, 

(11) 

(12) 

where G ( n )  is an N x N matrix function, we obtain 

apa,[G-'(n)G,(n)]= 11G-'(n - l)G(n)-G-'(n)G(n + 1)11 

which becomes in the scalar case, defining G(n)  = exp[X(n)], 

spX, ( n )  = exp[X(n) -X(n - l)] - exp[X(n + 1) -X(n)], s = a/l1. 

Setting 
$(l) =L- 1 - - 1 1E-+aG-'(n)Gt(n), 

$(*)=L; +LT = G-'(n)G(n + l)E++11E-+aG-'(n)G,(n), 
we obtain 

aP 8, [G-'(n (n 11 -a a, [G-'(n )Gr (n  11 
= 11GP1(n - 1)G(n) - G-'(n)G(n + 1)11, (13) 

(14) 

which becomes in the scalar case 

8pX,(n)-6aXt,(n) =exp[X(n)-X(n - l)]-exp[X(n + 1)-X(n)]. 

Equations (12) and (14) are two different extensions of the Toda lattice to two 
dimensions; equations (1 1) and (13) are the corresponding non-Abelian Toda lattice 
equations, which can be thought of as two-dimensional extensions of discrete chiral 
models (Popovicz 1980). By a change of variable, both equation (12) and equation (14) 
can be reduced to the two-dimensional Toda chain considered by Mikhailov (1979). 
Equation (13) is the appropriate extension to two dimensions of the non-Abelian Toda 
lattice considered by Bruschi et a1 (1980). 

If we set 

9 -  *(')-il+i;+& =(l+y)A(n)A(n  + l ) (E+)*+D(n)E+ 

+A(n)+A(n  +l )+(E-)* ,  

$(2)=i: +Ly = A ( n ) E + + E - ,  

where D ( n )  = p Cy=-,  (Ay ( j )  +Ay ( j  - l)), y is a constant andA(n)  is an N x N matrix 
function, we obtain from equation (15) 

PDyy(n)-aA, (n> =[YIP (1 + Y)I(E+- 1)(D(n - l)A(n)-A(n - 1)D(n)),  
which is a non-Abelian Volterra equation whose continuous limit gives the Kadomtsev- 
Petviashvili equation (Ivlikhailov 1979). 

The discrete two-dimensional three-wave equation can be obtained with the 
following definitionst. 

t By 6, we mean the usual Kronecker delta function, such that S,, = 0 for i f j and S,, = 1 for i = j  
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11 =Ly,i,+L&, =biSijE-+(l-Si,)(b, -bj)Qij(n)+Sijbi(Ri(n)- 1)’ 

Ri(n)  = Q i  (n)-Qii (n - 11, 

$(*I 11 =L;ij+L&j = ajSijE-+(l -Sij)(aj  - ~ ~ ~ ) Q ~ ~ ( n ) + t ? ~ ~ a ~ ( R ~ ( n ) -  1) 
i ,  j = 1 , 2 ,  3 ,  

where Qi j (n )  = Q t  ( n ) .  

pd,[bjQij(n)-biQij(n - l )]-adt[ajQij(n)-aiQij(n - l ) ] + s i j ( E + -  l )Q j j (n  - 1 )  

By applying equation (10)  we obtain 

=sij(Ri(n)Qij(n)-Qij(n - l)Rj(n))+srjQir(n)Qrj(n) 

-sijQir(n - l)Qrj(n) (16) 

+SirQir(n - l)Qrj(n - I ) ,  r fi  Z j ,  11 I I I I )  
s.. = b,a.  -b .a .  

pbi d,Ri(n)-aai d ,R i (n )=  1 s , ( E + - l ) Q i r ( n - l ) Q , ( n - l ) .  
r # i  

3. Equations in one continuous and two discrete variables 

Let us introduce instead of the time derivative operator d, the shift operator D such that 

Dfb, 4 =f(n, d + 1 )  

where the variable d spans the space of the integer numbers. In such a case we 
introduce a new operator f0, and consequently ?, satisfying equation (4) in the 
following way: 

Ni-  N- 
?o = ( y  +&)D, do= 1 f&+ 1 L,, 

j =O j = l  

N+ N- 
? = ( y  +&D, A = C L;+ L;, 

j = O  j = l  

where L& are defined by equation (3) and f; by equation (6) with the real variable t 
substituted by the integer variable d. With this definition of ?o, the potentials ut) (n, d) ,  
u t )  (n, d)  are related to the solution of the discrete Gel’fand-Levitan ‘integral’ equation 
( 1 )  in the following way: 

v f ’ (n ,  d )  = K + ( n ,  n + k ; d ) l i  - ll:K+(n - j ,  n - j + k ; d + 1 )  
k - 1  

- C v!)(n, d ) ~ + ( n  - j  +s, n - j  + k ;  d + I ) ,  
s = l  

k + l  

s = o  
+ (K+(n,n+k-s;d)l:-Z:K+(n+s,n+k;d+l)) 
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N--1 N--r 
- 1 1 v ~ " ' ( n , d ) K + ( n - r , n + k ; d + 1 )  

r = O  s = l  

N .- + (K+(n,n+k+s;d)l,-lTK+(n-s,n+k;d+l)), k s l .  
r = l  

The solution K+(n, s; d )  of the discrete Gel'fand-Levitan integral equation (1) now 
satisfies the following equation: 

y(K+(n, s; d + l ) - -K+(n ,  s; d))+.kK+(n, s; d + 1)- 
N+ 

K+(n, s - j ;  d)l: 
j = O  

N- 

j = 1  
- e K+(n, s + j ;  d)l ,y  = O, 

We can easily prove that if the operator 

[?"I, fi] = 0, fg) = ( y  +do)D,  

s >n +N+ 

fi satisfies simultaneously the two equations 

with [do, 9h*)] = 0, then the 'dressed' operators J& and 9 satisfy the equation 

y(D&'2'-$i2)D)-p.hyD =[$'*',AD]. (17) 

y (09 - 9 D )  = [2, A D ] ,  

&* =A*, 

We can rewrite equation (17) in two different ways, depending on which operator f 
we consider as the spectral operator; the choice 9 = f'iz) implies 

(18) 
i.e. 

(y  +&D* = +B(A), 
where the matrix B(A) depends on the asymptotic behaviour of the functions 4(n,  y ,  t )  
and +'(n, y, t )  =D$(n, y,  t ) .  Equation (18) is the BT (Levi et a1 1981) for the spectral 
operator 9 once we define 

uit"(n) = z&(n, d ) ,  uF)'(n) = u f ' ( n ,  d +1), 

where u t ' ( n )  may depend parametrically on y and t. 
The other choice 9 = f") gives 

= [2, 9'2'] 
i.e. 

&* =A*, p$Jy = -9'2'*, 

(19) 

which is the Lax equation for the spectral operator 9 when y is a time-like variable. 
In the following we give some examples of systems which fall in the first or second 

class (i.e. formula (18) or (19)), i.e. the class of BTS of the NDEES given in the previous 
section or the class of NDEES in two discrete variables, n and d, and one continuous 
'time' variable y .  

The BT for equation (1 1) is obtained by choosing 

= IIE- - y + yG-l(n)G'(n) (20) 
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and it is 

y/3 d,[G-l(n)G’(n)]= 11(G’(n - l))-’G’(n)-G-’(n)G(n + 1)11 

which reduces in the scalar case to 

(yP/1 J d, [X ’(n ) - X (n  )] = exp[X (n  ) - X ’(n - l)] - exp[X (n + 1) - X ’(n )]. 

The same choice for J$? given by equation (20) yields the BT of equation (13); we obtain 

y( l lG-’(n - l)G’(n - l)-G-’(n)C?’(n)l~) 

=&[(G’(n - l))-’G;(n - l)-Cr-l(n)Gt(n)ll], 

ay[(G’(n))-’G: ( n )  - G-’(n)G,(n)]-Py d,[G-’(n)G’(n)] = G-’(n)G(n + 1)11 

-llG-’(n - l)G‘(n) +ay[(G’(n))-’G,(n)G-l(n)G’(n) - G-’(n)G: ( n )  

- G-l(n)G,(n) + (G’(n))-lG; (n)], 

which becomes in the scalar case 

LY a,[X’(n - l)-X(n)]=r[exp[X’(n + 1)-X(n - l)]-exp[X’(n)-X(n)]], 

f f Y  dtCX’(n) -X(n)l  -Pr a y  [X’(n) -x (n)l 

= Il[exp[X(n + 1) -X’(n)]-exp[X(n)-X’(n - l)]]. 

The BT for the discrete two-dimensional three-wave equation (16) is obtained by 
setting 

A,, =&,E-+&, (Q, ( n )  -a: (n  - I))+ (1 -8,,)(Q,, ( n )  -Q:,(n - 1)) 

where Q,(n)  = Q,, ( n ) .  Defining Ar = (E: - l), I = n, d, we obtain 

a,(r+Q1(n)-Q:(n-i))A,(Q~(n -1)--QZ(n-l))-P d,[Q,(n)-Q:(n -111 
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we obtain 

-yP&(G-l(n, d)G,(n, d ) )  = lG-'(n - 1, d)G(n, d + l)-G-'(n, d)G(n + 1, d + 1)1, 

which becomes in the scalar case 

(@/l)ayAdX(n,d)=exp[X(n,h+1)-X(n-1,  d)]-exp[X(n+l,d+l)-X(n, d) ] .  

By choosing 

9'') = G-l(n - 1,  d)G(n, d)Ef ,  

= G-l(n - 1,  d)G(n, d + 1)E' +lE-+PF(n, d ) ,  
where 

m 

F(n, d ) =  JY dy'(G-l(n - 1, d)G(n, d)l-lG-'(n -2 ,  d+l)G(n  - 1, d + l ) ) ,  

we obtain 

Y&(G-'(n - 1, d)G(n, d ) ) - p  d,[G-'(n - 1,  d)G(n, d + 111 
= G-l(n - 1, d )G(n, d ) F ( n  + 1, d j -F(n ,  d)G-'(n - 1, d + l )G(n,  d + 1). 

4. NDDES 

We now discretise both the time variable t and the time-like variable y by introducing a 
new shift operator H such that Hf(n, d, h )  =f(n,  d ,  h + 1).  We thus have that if the 
operator 8 satisfies simultaneously the two equations 

[?ill, E] = 0, = (a +&")D, 

.[?i", E] = 0, ?p = (p +2j")H, 
NI+ N,- 

98) = ll(j)(E')k + l;(j)(E-)k, j = 1,2 ,  
k = O  k = l  

with [ $c l ,  9f'] = 0, then the dressed operators 9") and 9") satisfy the equation 

i.e. 

in terms of the spectral operator 9 = ?('). 

9"' = ZE-+aG-'(n, d ,  h)AdG(n, d ,  h ) ,  

Then we obtain 

C Y P & ( G - ~ ( ~ ,  d, h)AdG(n, d, h ) )  

CY (09 - 9 D )  = [&, LP1'D], 

=A$, (a + P ) D *  = *, 

In the following we give two examples of NDDES; let 

9") = G-'(n, d, h)G(n + 1, d, h + l )Et .  

= lG-l(n - 1, d + 1,  h)G(n, d + 1, h + l>-G-'(n, d ,  h)G(n + 1, d ,  h + 1)Z, 

which is a non-Abelian Toda lattice in three discrete variables. By choosing 

9") = G-'(n, d ,  h)G(n + 1, d + 1, h)E++B(n, d ,  h)+ZE-, 

$(2) = G-'(n, d ,  h)G(n + 1, d ,  h + l )Et ,  
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where 

B ( n ,  d ,  h )  = ( l / p )  
h 

j = - m  
(lG-'(n - 1,  d + l , j ) G ( n ,  d + 1 , j  + 1)  

- G-'(n, d ,  j ) G ( n  + 1,  d ,  j + 1)1),  

we obtain 

aAdG-'(n,  d ,  h ) G ( n  + 1, d ,  h + l ) -phhG- ' (n ,  d ,  h ) G ( n  + 1,  d + 1, h )  

= G-'(n, d ,  h ) G ( n  + 1, d ,  h + l )B(n  + 1, d ,  h + 1 )  

-B (n ,  d ,  h)G-'(n,  d + 1, h ) G ( n  + 1,  d + 1,  h + 1) .  
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